
Xplain Data GmbH

1
W

H
IT

E
 P

A
P

E
R

FROM RELATIONAL TABLES TO

“OBJECT ANALYTICS”

Xplain Data GmbH

Grünlandstr. 27

85604 Zorneding

Germany

info@xplain-data.com

xplain-data.com

WHY AN OBJECT-CENTRIC VIEW WILL BE
KEY FOR FUTURE AI SYSTEMS

Xplain Data GmbH

2

SUMMARY 3

OBJECT ANALYTICS VS.
RELATIONAL TABLES 4

WHAT RELATIONAL DATABASES

ARE MEANT FOR – AND WHAT NOT 4

HOW OBJECT ANALYTICS DIFFERS

FROM RELATIONAL DATABASES 4

ITERATING OBJECTS AND

“OBJECT MAP REDUCE” 6

EXAMPLES FOR

OBJECT ANALYTICS 6

EXAMPLES FOR OBJECT-
CENTRIC OPERATIONS 6

DEFINING OBJECT ANALYTICS

ARTIFACTS: PROGRAMMING

INTERFACES, E.G. PYTHON 7

THE XPLAIN OBJECT EXPLORER 9

CAUSAL DISCOVERY - AND WHY
FUTURE ALGORITHMS REQUIRE

OBJECTS AS A WHOLE 11

WHAT TO EXPECT

Xplain Data GmbH

3
SUMMARY

Relational databases are a key element in the
today’s world of data. They are a perfect solution
for what they have been built for: transactionally
managing data. For that they split an object into
different entities and store different entities in
different tables.

Once, however, an object is split into entities
and distributed across different tables, it is hard
to analyze the object “as a whole”. The object
in focus of analysis might be “The Patient” with
different data streams attached to it (diagnoses,
treatments, prescriptions etc.).

If a patient’s diagnoses and treatments are
scattered across different tables, it will be
difficult to analyze them in relation to each other.
An example: you want to know how patients are
treated after a COVID-19 diagnosis. It requires
to collect all diagnoses and treatments for each
patient (millions of them!) from different tables.
Obviously, having all information for each
patient already stored “jointly” would help.
When repeatedly scanning millions of patients
to compute statistical data, we don’t need to
collect all patient instances repeatedly from
different tables. I.e., we need the object
“Patient” accessible as a whole.

That’s what Object Analytics facilitates. For the
same reason that relational databases are the
best solution for transactional data manage-

ment, they are suboptimal for holistic analytics.
Vice versa, our Object Analytics database is not
meant for transactionally managing data, but it
is the best solution for “holistic analytics”. Future
analyses will require such a holistic view of your
company’s focus object - and thus an
object-centric representation of data will
become mandatory.

This White Paper explains our “Object Analytics”

paradigm and typical analytic operations on
whole objects that are supported. The Xplain
Object Explorer (XOE) builds on this and
implements a novel interactive frontend that
allows complex objects to be explored
analytically. Advanced analytics and future
Artificial Intelligence algorithms require such a
holistic view. An example is our Causal Discovery

approach. You will learn why understanding
cause and effect based on observational data will
be a key element of future AI systems, and why
holistic information is essential for this.

Xplain Data GmbH

4
OBJECT ANALYTICS VS.
RELATIONAL TABLES

WHAT RELATIONAL DATABASES ARE

MEANT FOR – AND WHAT NOT

First step in designing a relational data model is
defining the entities of the model, and how they
relate to each other (the keys). Different entities
are then stored in different tables. This, in
particular, facilitates transactional operations,
i.e., append, update, delete rows in a table.
Adding a row in a table is just a millisecond – as
only this single table is touched. Also, from an
analytics point of view, such a relational model is
very generic – no assumptions need to be made
about what the object in focus of the analysis is.

But: in 99 % of all analytical scenarios, a specific
object is the focus of attention. In healthcare it is
typically “The Patient”, in industry it’s “The
Machine” or “The Part” that is manufactured,
in CRM it’s “The Customer”.

Whenever a particular object is the focus of
your analysis, it is a good idea to organize the
data in a way that all data can be collected very
quickly for each object instance.

HOW OBJECT ANALYTICS DIFFERS

FROM RELATIONAL DATABASES

This is exactly what our Object Analytics
Database does:

1. Pull data from a relational database or other
data sources (see figure below)

2. Re-organize it in an “object-centric” manner
3. Scan millions of object instances in a second

- to execute complex analytical operations
which required the object as whole.

Figure 1 - With the Xplain Data Admin Tool (XAT), you can quickly and easily import data from your data sources.
You can then attach this data into your object tree.

Xplain Data GmbH

5
An example: let’s assume a health insurance
company with root-object “The Patient” and 10
million enrolled patients. This root object has
several sub-objects, such as diagnoses, prescrip-

tions, treatments, hospital cases. Many of these
sub-objects have recursive sub-objects (sub-sub-
objects).

A hospital case in itself is an object with further
sub-objects. Within a hospital case you usually
find procedures, measurements of clinical
parameters, cost items … When adding all data
to the root object, you typically end up in an
object model with more than 20, sometimes
even 50 sub-objects.

Typically, a sub-object corresponds to a stream
of events. A patient’s diagnoses, for example,
are a series of events, each with a timestamp.
In our health insurance example, let ś assume
that there are longitudinal data for each patient
for up to 5 years (all their diagnoses, prescrip-

tions, treatments, procedures …). With 10 million
patients, you quickly get to a few billion events
stored in sub-objects of the root object.

Figure 2 - Example of a complex, real-world object: “The Patient” with various data streams attached to it. “Object Analytics” means being
able to analyze the different data areas in relation to each other.

Based on this data, you may analyze out how
patients are treated after a COVID-19 diagnosis
and what other diagnoses follow. In a relational
database, you would have to develop some
“ugly” SQL code. Later you will see that this is
quite easy to do in our Object Analytics environ-

ment - just a few lines of code that are easy to
understand.

The experienced SQL developer might object
and still prefer SQL. But even if you have such a
competent SQL-expert in your department, long
runtimes of such complex SQL are typically the
result – far from supporting an interactive
analysis process.

Remember: for the above task of analyzing
diagnoses related to treatments, we need to

“join” two different tables via the patient key
(a foreign key in each of them), where each table
may contain billions of events.

Xplain Data GmbH

6
ITERATING OBJECTS AND

“OBJECT MAP REDUCE”

An SQL statement which aggregates statistics will
cycle through all rows in a table (iterate all rows)
to collect the requested statistics. In Object
Analytics, we do not iterate rows in a table, we
iterate all instances of an object (all patients).
The Object Analytics Database is designed to
make this pass through all objects extremely
fast. Each object already contains all patient-
related information, e.g., all diagnoses and treat-
ments. There is no need to expensively collect all
records related to a patient from different tables.
Once you have an object at hand as a whole, it is
easy to implement complex operations on
this object to compute the required statistics.

And this can be done very efficiently in parallel
with a number of threads on a multi-core
machine. As each object instance (each patient)
can be handled independently of the others, the
load can be easily distributed across different
cores: The first million patients go on core 1,
the next million on core 2, … Even for very big
machines with 256 cores, all cores can be fully
utilized. Once the results on sub-sets of patients
are computed, they are consolidated into a joint
result (the final reduce step).

For implementing a custom algorithm, the devel-
oper needs to specify only two methods:

1. how a single object instance contributes to
the required statistics

2. how results on sub-sets are consolidated to a
joint result.

Technically, the developer needs to implement
those two methods required by our Object Map
Reduce interface. Once those two methods are
defined, the Object Analytics engine will use
those definitions to execute the specified algo-

rithm in a fully parallel manner.

EXAMPLES FOR

OBJECT ANALYTICS

EXAMPLES FOR OBJECT-CENTRIC
OPERATIONS

The “relative time axis” is an example of an
artifact defined in an object model. It computes
the time difference between events in two
different branches of the object tree: for
example, the relative time of treatments in
relation to the first COVID-19 diagnosis. In our
example this relative time allows to select the
first weeks after COVID-19 and statistically see
which drugs are most frequently used in this
relative time period.

The relative time axis is an example of an artifact
which operates across different branches of an
object tree (across different sub-objects, e.g.,
across diagnoses and prescriptions).

Aggregations along the edges of the object tree
is another example. A simple one is a “COUNT”
for each patient, e.g., the count of anti-depressive

drugs prescribed in a defined time period. This
count aggregates data from the object-level
prescriptions (sub-object) to the level of patients
(root object level). Similar aggregations may be
defined along any branches of an object tree and
with arbitrary aggregation functions. A more
complex example might be: sum total anti-
depressant dose for each patient 6 months
after a COVID-19 diagnosis.

Xplain Data GmbH

7
There are several such “object-centric artifacts”
that relate different sub-objects to each other:

• a “rank definition” – it assigns a consecu-

tive number to each event within a class of
events

• “sequence aggregations” – they allow to get
the answer to questions like “what is the
first, second, third event of a specific type
after a COVID-19 diagnosis”

Xplain Data is continuously expanding these
Object Analytics capabilities.1

DEFINING OBJECT ANALYTICS

ARTIFACTS: PROGRAMMING

INTERFACES, E.G. PYTHON

Different interfaces are available to define Object
Analytics artifacts and perform queries on
available dimensions in the object tree:
• JavaScript: this makes it easy to create

web-based analytical applications. Our
Xplain Object Explorer (see section below)
is such an example of a web-based
application. The JavaScript interface targets
the web-developer.

• Python: to do all those Object Analytics
operations from within our Python
environment. Let’s see a few lines of
Python code required for the above
example: treatments after COVID-19.

1Our Object Analytics approach is protected by our US patent 11,194,811 B2 and EU patent EP3460680.

Figure 3 - Example call for creating a relative time axis: It creates a new dimension with name „Time relative to COVID-19 diagnosis“ for all
events in the “Therapy” object. The required time and reference time dimension are given by the corresponding arguments. The type of
events which define the reference point is given by the argument “referenceEventSelections”.

xsession.run({

 “method”: “addRelativeTimeDimensions”,

“name”: “Time relative to Covid-19 diagnosis”,

 “timeDimension”: {

 “dimension”: “Date of Therapy”,

 “object”: “Therapy”

 },

“referenceTimeDimension”: {

 “dimension”: “Date of diagnosis”,

 “object”: “Diagnoses”

 },

“referenceEventSelections”: [{

 “attribute”: {

 “attribute”: “ICD”,

 “dimension”: “ICD”,

 “object”: “Diagnoses”

 },

 “selectedStates”: [“COVID-19”]

 }]

})

Xplain Data GmbH

8
This call only declares the relative time axis – no
computation is done at that point of time. The
heavy lifting comes only as soon as a query is
executed which refers to the relative time axis.
In the below example you see such a query.

How much more SQL code would you need to do
the same? And if you get it done, will it execute
quickly on a multi-core machine? On a machine
with 256 cores and for the above 10 million
patients with a couple of billion events
(diagnoses and treatments) this query will
execute in around a second. During this second
all cores will be processing at full load – i.e.,
all resources will be optimally exploited.

result_dataframe = xsession.execute_query({

 “aggregations”: [{

 “object”: “Therapy”,

 “type”: “COUNT”

 }],

 “groupBys”: [{

 “attribute”: {

 “object”: “Therapy”,

 “dimension”: “Treatment type”,

 “name”: “Treatment type”

 }

 }],

 “selections”: [{

 “attribute”: {

 “object”: “Diagnoses”,

“dimension”: “Relative Time”,

“name”: “Relative Time”

 },

 “selectedStates”: [“[0w,4w[“]

 }]

})

Figure 4 - Python example of a query using the above declared relative time: This query selects all treatments in the first 4 weeks after a
previous COVID-19 diagnosis and counts the number of treatments grouped by type of treatment. Results are immediately converted into
a Pandas data frame, a well-known data structure in Python. As such, it may immediately be used for further processing or charting.

Xplain Data GmbH

9

THE XPLAIN OBJECT EXPLORER

The Xplain Object Explorer (XOE) builds upon
the above interfaces. It implements an inter-
active usability concept to statistically explore a
complex object in an agile way. You can set any
selections; those selections “propagate” along
the edges of the object tree, and you will see
how they affect other parts of the object tree.
The XOE is a web-based application - all you
need is an up-to-date browser. Just enter the
correct URL to connect to an Object Analytics
database.

Within the XOE you may define any of the
above-mentioned artifacts, for example a
relative time axis. Figure 6 below shows the
corresponding menu which allows you to set
the parameters of the relative time axis.

Figure 5 - General architecture: The Object Analytics database as the backend, interfaces and applications using these interfaces.

Xplain Data GmbH

10

Figure 7 - Analysis of the sequence of production steps. Using the relative time axis, you may as well explore the production process relative to
a failure event. The analysis is fully interactive, e.g., select different types for produced parts or different month to see how the process flow
differs with that.

 2 This example was kindly provided by Schwäbische Werkzeugmaschinen GmbH (SW).

Figure 6 - Definition of a relative time axis: For all prescriptions, this time axis computes the time difference to the specified type of diagnoses
(to the first one if the patient has multiple of those diagnoses).

Further UI-elements permit the creation of
other sorts of Object Analytics artifacts, e.g.,
aggregation dimensions or rank or sequence
definitions. Figure 7 below shows a further
example – in this case from the manufacturing
industry. This analysis allows to explore the
sequence of production steps, e.g., prior to
failure events.

Xplain Data GmbH

11
All artifacts used in the above analysis can also
be defined programmatically, e.g., by means of
the Python or JavaScript interface. Do the entire
analysis in Python or use the XOE in combination
with Python. The interplay between the XOE
as a graphical user interface and working on a
programmatical level is highly supported. If, for
example, you have defined an artifact in the
XOE (e.g., a relative time axis), simply look up its
definition in XOE, and, in terms of a few lines of
Python code, copy this definition and paste it into
your Python code.

CAUSAL DISCOVERY - AND WHY
FUTURE ALGORITHMS REQUIRE

OBJECTS AS A WHOLE

Object Analytics aims at analyzing complex
objects across all data attached to it. It facilitates
a holistic view to a complex object.
Understanding cause and effect based on
observational data requires such a holistic view.
The correlation between two variables A and B
can easily be computed – it requires these two
data fields only. As we all know, however,
correlation does not equal causation. For
example, the two variables “gray hair” and
“wearing glasses” are correlated: amongst
persons with glasses an increased fraction
also has gray hair.

Figure 8 - Example results from a Causal Discovery analysis: Factors which seem to drive breast cancer.

Xplain Data GmbH

12

Xplain Data GmbH

Grünlandstr. 27

85604 Zorneding

Germany

info@xplain-data.com

xplain-data.com

But glasses do not cause your hair to become
gray. The reason for the observed correlation is a
common cause - age: the older you get, the more
likely you need to wear glasses, and many of us
also get gray hair.

Many of those common causes might be existing
– all potential hypotheses need to be evaluated.
In a sense, causation is the opposite to
correlation. Correlation requires only the two
corresponding data fields, causation requires
“anything else” about the object in focus of
analysis. If no common causes (confounders) can
be found to explain an observed correlation
between two variables, only then we might
suspect a direct cause-and-effect relationship.

In other words, understanding potential cause
and effect relationships requires a holistic view
to the object in focus of analysis.

And – by what has been detailed in this White
Paper – that exactly is what our Object Analytics
approach facilitates. For more details on Causal
Discovery see our other White Papers
(www.xplain-data.com).

The analysis of complex real-world objects and
future Artificial Intelligence algorithms will need
an object-centric representation of data. Object
Analytics constitutes a tremendous opportunity
to develop novel algorithms for the next genera-

tion of Artificial Intelligence.

	ZUSAMMENFASSUNG
	GRAUES HAAR

